網站首頁 文學常識 簡歷 公文文書 文學名著 實用文 人生哲理 作文 熱點話題作文
當前位置:文萃咖 > 體裁作文 > 讀後感

《幾何原本》讀後感5篇

欄目: 讀後感 / 發佈於: / 人氣:2.83W

《幾何原本》是古希臘數學家歐幾里得所著的一部數學著作。又稱《原本》,它是歐洲數學的基礎,總結了平面幾何五大公設,被廣泛的認為是歷史上最成功的教科書。以下是小編整理的讀後感,希望對大家有幫助!

《幾何原本》讀後感5篇

《幾何原本》讀後感1

《幾何原本》的作者歐幾里得能夠代表整個古希臘人民,那麼我可以説,古希臘是古代文化中最燦爛的一支——因為古希臘的數學中,所包含的不僅僅是數學,還有着難得的邏輯,更有着耐人尋味的哲學。

《幾何原本》這本數學著作,以幾個顯而易見、眾所周知的定義、公設和公理,互相搭橋,展開了一系列的命題:由簡單到複雜,相輔而成。其邏輯的嚴密,不能不令我們佩服。

就我目前拜訪的幾個命題來看,歐幾里得證明關於線段“一樣長”的題,最常用、也是最基本的,便是畫圓:因為,一個圓的所有半徑都相等。一般的數學思想,都是很複雜的,這邊剛講一點,就又跑到那邊去了;而《幾何原本》非常容易就被我接受,其原因大概就在於歐幾里得反覆運用一種思想、使讀者不斷接受的緣故吧。

不過,我要着重講的,是他的哲學。

書中有這樣幾個命題:如,“等腰三角形的兩底角相等,將腰延長,與底邊形成的兩個補角亦相等”,再如,“如果在一個三角形裏,有兩個角相等,那麼也有兩條邊相等”。這些命題,我在讀時,內心一直承受着幾何外的震撼。

我們七年級已經學了幾何。想想那時做這類證明題,需要證明一個三角形中的兩個角相等的時候,我們總是會這麼寫:“因為它是一個等腰三角形,所以兩底角相等”——我們總是習慣性的認為,等腰三角形的兩個底角就是相等的;而看《幾何原本》,他思考的是“等腰三角形的兩個底角為什麼相等”。想想看吧,一個思想習以為常,一個思想在思考為什麼,這難道還不夠説明現代人的問題嗎?

大多數現代人,好奇心似乎已經泯滅了。這裏所説的好奇心不單單是指那種對新奇的事物感興趣,同樣指對平常的事物感興趣。比如説,許多人會問“宇航員在空中為什麼會飄起來”,但也許不會問“我們為什麼能夠站在地上而不會飄起來”;許多人會問“吃什麼東西能減肥”,但也許不會問“羊為什麼吃草而不吃肉”。

我們對身邊的事物太習以為常了,以致不會對許多“平常”的事物感興趣,進而去琢磨透它。牛頓為什麼會發現萬有引力?很大一部分原因,就在於他有好奇心。

如果僅把《幾何原本》當做數學書看,那可就大錯特錯了:因為古希臘的數學滲透着哲學,學數學,就是學哲學。

哲學第一課:人要建立好奇心,不僅探索新奇的事物,更要探索身邊的平常事,這就是我讀《幾何原本》意外的收穫吧!

《幾何原本》讀後感2

今天我讀了一本書,叫《幾何原本》。它是古希臘數學家、哲學家歐幾里德的一本不朽之作,集合希臘數學家的成果和精神於一書。

《幾何原本》收錄了原著13卷全部內容,包含了5條公理、5條公設、23個定義和467個命題,即先提出公理、公設和定義,再由簡到繁予以證明,並在此基礎上形成歐氏幾何學體系。歐幾里德認為,數學是一個高貴的世界,即使身為世俗的君主,在這裏也毫無特權。與時間中速朽的物質相比,數學所揭示的世界才是永恆的。

《幾何原本》既是數學著作,又極富哲學精神,並第一次完成了人類對空間的認識。古希臘數學脱胎於哲學,它使用各種可能的描述,解析了我們的宇宙,使它不在混沌、分離,它完全有別於起源並應用於世俗的中國和古埃及數學。它建立起物質與精神世界的確定體系,致使渺小如人類也能從中獲得些許自信。

本書命題1便提出瞭如何作等邊三角形,由此產生了三角形全等定理。即角、邊、角或邊、角、邊或邊、邊、邊相等,並進一步提出了等腰三角形——等邊即等角;等角即等邊。就這樣歐幾里德分別從點、線、面、角四個部分,由淺入深,提出了自己的幾何理論。前面的命題為後面的鋪墊;後面的命題由前面的推導,環環相扣,十分嚴謹。

這本書博大精深,我只能看懂十分之一左右,非常震撼,歐幾里德不愧為幾何之父!他就是數學史上最亮的一顆星。我要向他學習,沿着自己的目標堅定的走下去。

《幾何原本》讀後感3

《幾何原本》是古希臘數學家歐幾里得的一部不朽之作,集整個古希臘數學的成果和精神於一身。既是數學鉅著,也是哲學鉅著,並且第一次完成了人類對空間的認識。該書自問世之日起,在長達兩千多年的時間裏,歷經多次翻譯和修訂,自1482年第一個印刷本出版,至今已有一千多種不同版本。

除《聖經》以外,沒有任何其他著作,其研究、使用和傳播之廣泛能夠和《幾何原本》相比。漢語的最早譯本是由意大利傳教士利瑪竇和明代科學家徐光啟於1607年合作完成的,但他們只譯出了前六卷。證實這個殘本斷定了中國現代數學的基本術語,諸如三角形、角、直角等。日本、印度等東方國家皆使用中國譯法,沿用至今。近百年來,雖然大陸的中學課本必提及這一偉大著作,但對中國讀者來説,卻無緣一睹它的全貌,納入家庭藏書更是妄想。

徐光啟在譯此作時,對該書有極高的評價,他説:“能精此書者,無一事不可精;好學此書者,無一事不科學。”現代科學的奠基者愛因斯坦更是認為:如果歐幾里得未能激發起你少年時代的科學熱情,那你肯定不會是一個天才的科學家。由此可見,《幾何原本》對人們理性推演能力的影響,即對人的科學思想的影響是何等巨大。

《幾何原本》讀後感4

古希臘大數學家歐幾里德是和他的鉅著——《幾何原本》一起名垂千古的。這本書是世界上最著名、最完整而且流傳最廣的數學著作,也是歐幾里德最有價值的一部著作。在《原本》裏,歐幾里德系統地總結了古代勞動人民和學者們在實踐和思考中獲得的幾何知識,歐幾里德把人們公認的一些事實列成定義和公理,以形式邏輯的方法,用這些定義和公理來研究各種幾何圖形的性質,從而建立了一套從公理、定義出發,論證命題得到定理得幾何學論證方法,形成了一個嚴密的邏輯體系——幾何學。而這本書,也就成了歐式幾何的奠基之作。

兩千多年來,《幾何原本》一直是學習幾何的主要教材。哥白尼、伽利略、笛卡爾、牛頓等許多偉大的學者都曾學習過《幾何原本》,從中吸取了豐富的營養,從而作出了許多偉大的成就。

從歐幾里得發表《幾何原本》到現在,已經過去了兩千多年,儘管科學技術日新月異,由於歐氏幾何具有鮮明的直觀性和有着嚴密的邏輯演繹方法相結合的特點,在長期的實踐中表明,它巳成為培養、提高青少年邏輯思維能力的好教材。歷史上不知有多少科學家從學習幾何中得到益處,從而作出了偉大的貢獻。

少年時代的牛頓在劍橋大學附近的夜店裏買了一本《幾何原本》,開始他認為這本書的內容沒有超出常識範圍,因而並沒有認真地去讀它,而對笛卡兒的“座標幾何”很感興趣而專心攻讀。後來,牛頓於1664年4月在參加特列台獎學金考試的時候遭到落選,當時的考官巴羅博士對他説:“因為你的幾何基礎知識太貧乏,無論怎樣用功也是不行的。”

這席談話對牛頓的震動很大。於是,牛頓又重新把《幾何原本》從頭到尾地反覆進行了深入鑽研,為以後的科學工作打下了堅實的數學基礎。

但是,在人類認識的長河中,無論怎樣高明的前輩和名家,都不可能把問題全部解決。由於歷史條件的限制,歐幾里得在《幾何原本》中提出幾何學的“根據”問題並沒有得到徹底的解決,他的理論體系並不是完美無缺的。比如,對直線的定義實際上是用一個未知的定義來解釋另一個未知的定義,這樣的定義不可能在邏輯推理中起什麼作用。又如,歐幾里得在邏輯推理中使用了“連續”的概念,但是在《幾何原本》中從未提到過這個概念。

《幾何原本》讀後感5

公理化結構是近代數學的主要特徵。而《原本》是完成公理化結構的最早典範,它產生於兩千多年前,這是難能可貴的。不過用現代的標準去衡量,也有不少缺點。首先,一個公理系統都有若干原始概念,或稱不定義概念,作為其他概念定義的基礎。點、線、面就屬於這一類。而在《原本》中一一給出定義,這些定義本身就是含混不清的。其次是公理系統不完備,沒有運動、順序、連續性等公理,所以許多證明不得不借助於直觀。此外,有的公理不是獨立的,即可以由別的公理推出。這些缺陷直到1899年希爾伯特(Hilbert)的《幾何基礎》出版才得到了補救。儘管如此,畢竟瑕不掩瑜,《原本》開創了數學公理化的正確道路,對整個數學發展的影響,超過了歷史上任何其他著作。

《原本》的兩個理論支柱——比例論和窮竭法。為了論述相似形的理論,歐幾里得安排了比例論,引用了歐多克索斯的比例論。這個理論是無比的成功,它避開了無理數,而建立了可公度與不可公度的正確的比例論,因而順利地建立了相似形的理論。在幾何發展的歷史上,解決曲邊圍成的面積和曲面圍成的體積等問題,一直是人們關注的重要課題。這也是微積分最初涉及的問題。它的解決依賴於極限理論,這已是17世紀的事了。然而在古希臘於公元前三四世紀對一些重要的面積、體積問題的證明卻沒有明顯的極限過程,他們解決這些問題的理念和方法是如此的超前,並且深刻地影響着數學的發展。

化圓為方問題是古希臘數學家歐多克索斯提出的`,後來以“窮竭法”而得名的方法。“窮竭法”的依據是阿基米得公理和反證法。在《幾何原本》中歐幾里得利用“窮竭法”證明了許多命題,如圓與圓的面積之比等於直徑平方比。兩球體積之比等於它們的直徑的立方比。阿基米德應用“窮竭法”更加熟練,而且技巧很高。並且用它解決了一批重要的面積和體積命題。當然,利用“窮竭法”證明命題,首先要知道命題的結論,而結論往往是由推測、判斷等確定的。阿基米德在此做了重要的工作,他在《方法》一文中闡述了發現結論的一般方法,這實際又包含了積分的思想。他在數學上的貢獻,奠定了他在數學史上的突出地位。

作圖問題的研究與終結。歐幾里得在《原本》中談了正三角形、正方形、正五邊形、正六邊形、正十五邊形的作圖,未提及其他正多邊形的作法。可見他已嘗試着作過其他正多邊形,碰到了“不能”作出的情形。但當時還無法判斷真正的“不能作”,還是暫時找不到作圖方法。

高斯並未滿足於尋求個別正多邊形的作圖方法,他希望能找到一種判別準則,哪些正多邊形用直尺和圓規可以作出、哪些正多邊形不能作出。也就是説,他已經意識到直尺和圓規的“效能”不是萬能的,可能對某些正多邊形不能作出,而不是人們找不到作圖方法。1801年,他發現了新的研究結果,這個結果可以判斷一個正多邊形“能作”或“不能作”的準則。判斷這個問題是否可作,首先把問題化為代數方程。

然後,用代數方法來判斷。判斷的準則是:“對一個幾何量用直尺和圓規能作出的充分必要條件是:這個幾何量所對應的數能由已知量所對應的數,經有限次的加、減、乘、除及開平方而得到。”(圓周率不可能如此得到,它是超越數,還有e、劉維爾數都是超越數,我們知道,實數是不可數的,實數分為有理數和無理數,其中有理數和一部分無理數,比如根號2,是代數數,而代數數是可數的,因此實數中不可數是因為超越數的存在。雖然超越數比較多,但要判定一個數是否為超越數卻不是那麼的簡單。)至此,“三大難題”即“化圓為方、三等分角、二倍立方體”問題是用尺規不能作出的作圖題。正十七邊形可作,但其作法不易給出。高斯(Gauss)在1796年19歲時,給出了正十七邊形的尺規作圖法,並作了詳盡的討論。為了表彰他的這一發現,他去世後,在他的故鄉不倫瑞克建立的紀念碑上面刻了一個正十七邊形。

幾何中連續公理的引入。由歐氏公設、公理不能推出作圖題中“交點”存在。因為,其中沒有連續性(公理)概念。這就需要給歐氏的公理系統中添加新的公理——連續性公理。雖然19世紀之前費馬與笛卡爾已經發現解析幾何,代數有了長驅直入的進展,微積分進入了大學課堂,拓撲學和射影幾何已經出現。但是,數學家對數系理論基礎仍然是模糊的,沒有引起重視。直觀地承認了實數與直線上的點都是連續的,且一一對應。直到19世紀末葉才完滿地解決了這一重大問題。從事這一工作的學者有康託(Cantor)、戴德金(Dedekind)、皮亞諾(Peano)、希爾伯特(Hilbert)等人。

當時,康託希望用基本序列建立實數理論,代德金也深入地研究了無理數理念,他的一篇論文發表在1872年。在此之前的1858年,他給學生開設微積分時,知道實數系還沒有邏輯基礎的保證。因此,當他要證明“單調遞增有界變量序列趨向於一個極限”時,只得藉助於幾何的直觀性。

實際上,“直線上全體點是連續統”也是沒有邏輯基礎的。更沒有明確全體實數和直線全體點是一一對應這一重大關係。如,數學家波爾查奴(Bolzano)把兩個數之間至少存在一個數,認為是數的連續性。實際上,這是誤解。因為,任何兩個有理數之間一定能求到一個有理數。但是,有理數並不是數的全體。有了戴德金分割之後,人們認識至波爾查奴的説法只是數的稠密性,而不是連續性。由無理數引發的數學危機一直延續到19世紀。直到1872年,德國數學家戴德金從連續性的要求出發,用有理數的“分割”來定義無理數,並把實數理論建立在嚴格的科學基礎上,才結束了無理數被認為“無理”的時代,也結束了持續2000多年的數學史上的第一次大危機。

《原本》還研究了其它許多問題,如求兩數(可推廣至任意有限數)最大公因數,數論中的素數的個數無窮多等。

在高等數學中,有正交的概念,最早的概念起源應該是畢達哥拉斯定理,我們稱之為勾股定理,只是勾3股4弦5是一種特例,而畢氏定理對任意直角三角形都成立。並由畢氏定理,發現了無理數根號2。在數學方法上初步涉及演繹法,又在證明命題時用了歸謬法(即反證法)。可能由於受丟番圖(Diophantus)對一個平方數分成兩個平方數整數解的啟發,350多年前,法國數學家費馬提出了著名的費馬大定理,吸引了歷代數學家為它的證明付出了巨大的努力,有力地推動了數論用至整個數學的進步。1994年,這一曠世難題被英國數學家安德魯威樂斯解決。

多少年來,千千萬萬人(著名的有牛頓(Newton)、阿基米德(Archimedes)等)通過歐幾里得幾何的學習受到了邏輯的訓練,從而邁入科學的殿堂。

Tags:讀後感 幾何